1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| >>> import torch >>> import torch.nn.functional as F >>> F.softmax(torch.Tensor([0, float('-inf')]), -1) tensor([ 1.0000, 0.0000]) >>> F.softmax(torch.Tensor([0, float('inf')]), -1) tensor([ nan, nan]) >>> F.log_softmax(torch.Tensor([0, float('-inf')]), -1) tensor([ 0.0000, -inf]) >>> F.log_softmax(torch.Tensor([0, float('inf')]), -1) tensor([ nan, nan]) >>> F.softmax(torch.Tensor([float('-inf'), 0, float('-inf')]), -1) tensor([ 0.0000, 1.0000, 0.0000]) >>> F.softmax(torch.Tensor([0, float('inf'), 0]), -1) tensor([ nan, nan, nan]) >>> F.softmax(torch.Tensor([float('-inf'), 0, float('inf')]), -1) tensor([ nan, nan, nan])
|