0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| from __future__ import absolute_import from __future__ import print_function
import torch.nn as nn import torch
class Linear(nn.Module): def __init__(self, p_dropout=1): super(Linear, self).__init__() self.dropout = nn.Dropout(p_dropout)
def forward(self, x): y = self.dropout(x) return y
net = Linear() a = torch.ones(4)
net.train() print(net(a))
net.eval() b = torch.ones(4) print(net(b))
|
1 2 3 4 5 6 7 8 9 10 11 12 13
| Variable containing: 0 0 0 0 [torch.FloatTensor of size 4]
Variable containing: 1 1 1 1 [torch.FloatTensor of size 4]
|